COMPRESS OF SUPER HIGH DEFINITION IMAGES USING SUCCESSIVE APPROXIMATION WAVELET LATTICE QUANTISATION

E. A. B. da Silva* D. G. Sampson M. Ghanbari
University of Essex, UK

ABSTRACT
A method of coding super high definition (SHD) still images based on lattice vector quantisation of wavelet coefficients is proposed. In this coding technique, each block of wavelet coefficients is coded by a series of vectors of decreasing magnitudes, resulting in a successive approximation process. It also exploits the structural similarities among the bands. This provides efficient coding together with the ability to guarantee arbitrary distortion levels for each band, which can be exploited to achieve optimum bit allocation. Conventional image compression techniques such as transform, sub-band and vector quantisation have already been tested for the coding of SHD images. Simulation results show that the proposed method achieves excellent coding performance and it outperforms other SHD image coding methods reported so far by more than 7 dB.

INTRODUCTION
There has been an increasing interest on super high definition (SHD) images, mainly due to the growing demand for high quality electronic imaging [1]. Following a discussion on the quality requirements of SHD images, a baseline SHD image format has been selected as a 60 Hz non-interlaced 2048x2048 pixel resolution at 24 bits/pixel full colour image. A simple estimate of the amount of data needed for the storage or transmission of a single SHD image frame is 12 Mbytes. This clearly shows that data compression will be an essential element of any SHD imaging system.

Among the basic requirements that a compression system designed for SHD image coding should satisfy are:

(i) Picture quality should be perceptually transparent with a compression ratio greater than 10:1 [1],
(ii) Computational complexity of the coding system must be minimum, due to the large amount of data to be processed, and
(iii) The coding system should be hierarchical, in order to guarantee compatibility between the SHD and other existing lower resolution image formats (i.e. multimedia applications).

The performance of conventional image coding methods, such as transform, sub-band and vector quantisation, has been reported for coding SHD images. In general, these coding methods give similar peak signal-to-noise ratio results [1,2]. Nevertheless, there are certain drawbacks related with these methods that can be pointed out. For example, DCT-based algorithms can introduce block distortion which is unacceptable in high picture quality applications. On the other hand, the use of VQ in high-quality image coding requires very large codebooks, which typically lead to an unaffordable increase of complexity.

In this paper we propose a coding method for SHD image coding, based on Successive-Approximation Wavelet Vector Quantisation (SA-W-VQ). In SA-W-VQ, each vector of wavelet coefficients is coded by a series of vectors of decreasing magnitudes [3]. Also, the structural similarities among the bands of same orientation are exploited in order to generate zero tree roots, which increases the efficiency of the coder.

SUCCESSIVE APPROXIMATION WAVELET VECTOR QUANTISATION

A wavelet transform is the decomposition of a signal into expansions and translations of a mother function ψ(t). It can be implemented via an octave band sub-band analysis/synthesis process. Wavelet transforms have been very popular for image coding applications. They provide a tool for image data decorrelation, resulting into a set of coefficients that can be coded more efficiently than the original pixel values. The wavelet transform performs analysis of a signal in the frequency domain. This property can be exploited in image coding, so that bit allocation among the wavelet coefficients can be done according to the human visual system sensitivity (HVS) to each of the frequency bands, also known as noise shaping [4]. Therefore, in order for a wavelet coder to achieve this bit allocation, it is convenient that an arbitrary level of distortion can be set for each band. Another important issue in the design of a coder for wavelet coefficients is the level of quantisation error introduced to each individual coefficient. The overall picture quality can be significantly affected by

*His work was supported in part by Universidade Federal do Rio de Janeiro and Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, under grant 200883/91-9

Image Processing And Its Applications, 4-6 July 1995
a poorly quantised coefficient, because the wavelet
 synthesis process spreads this error over an area of
 the image [5].
 Considering also that efficiency dictates that zero-
 tree roots have to be exploited in wavelet coding,
 three very important requirements for a wavelet
 image coder can be summarised as follows:

(i) structural similarities among the bands of same
 orientation;

(ii) noise shaping, where an arbitrary level of dis-
 tortion must be set for each band;

(iii) control over the maximum level of quantisation
 error made in each wavelet coefficient.

It is important to point out that, in SHD image
 coding, since perceptually transparent image qual-
 ity is required with maximum compression, these
 requirements acquire special importance. It will be
 shown that SA-W-VQ satisfy these requirements,
 and indeed is a very efficient method for SHD images.

Successive approximation vector quantisation

An important element of SA-W-VQ is the coding of
 the significant wavelet coefficients through suc-
 cessive passes. More specifically, vectors of wavelet
 coefficients are successively refined, so that at each
 pass the residual quantisation error of the previous
 passes is further coded. Successive refinement of the
 residual errors continues until a certain distortion is
 achieved, or the bit rate budget is exhausted.

In successive approximation using k-dimensional
 vectors, a vector \mathbf{x} is approximated by a series
 of vectors of decreasing magnitudes $\{\alpha^j \| V \| \mathbf{g}_j, j = 1, 2, \ldots\}$ where $\alpha < 1$ and \mathbf{g}_j is an orientation (unity
 energy vector) in k-dimensional space. Convergence
 is guaranteed if, for any initial magnitude $\| V \|$, the
 zero vector can be approximated with arbitrary pre-
 cision provided that the number of passes is suffi-
 ciently large. This process is illustrated in figure 1.
 It can be shown that if, at each pass, the maximum
 error in orientation is θ_{max}, the scheme will
 converge (i.e. $\| r_n \| \to 0$ as $n \to \infty$) if the values of α
 and θ_{max} satisfy some relations. That is, for
 each value of θ_{max}, there is a value $\bar{\alpha}$ such
 that the scheme will converge for each value of $\alpha \geq \bar{\alpha}$. It has been
 shown [3] that the value of $\bar{\alpha}$ increases with θ, as
 well as the number of iterations required for con-
 vergence. This is illustrated in figures 2.a and 2.b.

Therefore, since more iterations would require more
 bits to achieve a certain distortion, the main require-
 ment in the design of an orientation codebook is to
 provide a fairly low value of θ_{max}. It has been found
 that codebooks built upon regular lattices [6]
 are a good choice for the orientation codebook of this
 scheme. Lattice codebooks can offer a good trade
 off between θ_{max} and the codebook population, due

figure 1: Analysis of convergence of the vector suc-
 cessive approximation.

to their space packing properties. Moreover, regu-
 lar lattices offer the advantage of simple and fast
 encoding algorithms, which can be vital in super high
 definition image coding.

SUPER HIGH DEFINITION IMAGE CODING USING SA-W-VQ

In this section, the application of SA-W-VQ in
 coding of super high definition images is addressed,
 and the coding system used in our experiments is
 described.

The two-dimensional wavelet transform used in
 this work is an octave band decomposition applied
 both to the rows and columns of an image. It is
 implemented by the biorthogonal filter bank
 6.5.7 described in [7], which was shown to give
 good subjective performance for wavelet transform
 coders.

Optimum bit allocation One of the main
 advantages of SA-W-VQ is that, due to the suc-
 cessive approximation process, arbitrary levels of dis-
 tortion can be set to each band. This enables us to
 perform noise shaping [4] of the wavelet coefficients
 according to a certain human visual system (HVS)
 response in a straightforward way. This is because
 the distortion can be set in each band so as to match
 a desired error spectrum characteristic. This is very
 important in SHD image coding, since the coding
 distortions must not be visible. SA-W-VQ can take
 full advantage of the HVS characteristics.

Lattice-based orientation codebook As has
 been mentioned above, lattice codebooks [8] are a
 good choice for the orientation codebook in a suc-
 cessive approximation vector quantisation process.
 Several lattice codebooks have been tested and com-
 pared; it was found that the Barnes-Wall lattice
 A_{16} offers the best rate-distortion results. In our
 experiments, the orientation codebook is built by
 the second spherical shell of A_{16}, which consists of 4320
 code vectors.
Zero-tree roots An important property of a two-dimensional wavelet transform is that, despite the low correlation among bands, there exists a strong structural similarity among the bands of the same orientation. Figure 3.a exemplifies this fact, where a 3 stage wavelet transform of the LENA test image is shown, and this similarity can be clearly seen. This implies that the zero valued coefficients of the bands of same orientation tend to be in the same corresponding positions. Referring to figure 3.b, if the coefficient $b_k(i, j)$ in band B_k is zero, its is likely that the coefficients $b_{k-1}(2i, 2j)$, $b_{k-1}(2i + 1, 2j)$, $b_{k-1}(2i, 2j + 1)$ and $b_{k-1}(2i+1, 2j+1)$ in band B_{k-1} will also be zero, where B can be V, H or D. This similarity can be exploited to produce a zero-tree root, where, a single symbol indicates that coefficient $b_k(i, j)$ is zero and all its corresponding ones in the bands B_r, $r < k$ are zero [9]. Figure 3.b shows corresponding coefficients and zero-tree roots for the vertical bands of a 4 stage decomposition. The coder described next makes use of this property.

Description of the coder In SHD image coding using SA-W-VQ, first the image mean is extracted. In our simulations, a 4 stage biorthogonal wavelet transform is then applied to the zero-mean image. The wavelet coefficients are weighted according to the assumed HVS response. Each band of wavelet coefficients is partitioned into k-dimensional blocks.

The maximum magnitude $\|V\|$ of all input vectors is computed. Initially, the reference magnitude ℓ of the code vectors is set to $\alpha\|V\|$, where the value of α is chosen according to the θ_{max} value of the selected lattice codebook. All the vectors are scanned, and the ones with magnitudes smaller than ℓ are set to zero. Each of the remaining vectors is replaced by its closest orientation code vector scaled with magnitude ℓ. After this pass, the locations of the zero vectors are transmitted. This is done via 3 symbols: zero (Z), zero tree root (ZT) and coded value (C). If a vector is zero and all of its corresponding vectors in the higher bands of the same orientation are also zero this vector is replaced by a ZT, so that it is not necessary to transmit its corresponding vectors.
For the lowest frequency band, a ZT implies that the corresponding vectors in all bands are zero. In case that a vector is known but not a ZT, it is marked as Z, and no information can be inferred about its corresponding vectors. On the other hand, a non-zero vector is replaced by a coded value symbol (C).

The string generated by the three symbols (ZT, Z and C), is then coded by the arithmetic coder described in [10] with an adaptive model. In the higher frequency bands, since there are no ZT's, the arithmetic coder uses a model with only 2 symbols (Z and C). After encoding this string, which indicates the location of the zero vectors, the orientation code vector of the non-zero vectors (marked as C) are encoded. For this purpose, the model of the arithmetic coder is reinitialised to have as many symbols as the population of the orientation codebook. The reference magnitude \(\ell \) is then updated through multiplication by \(\alpha \). The difference between the original and the non-zero reconstructed vectors is coded using the new reference magnitude. The new orientation code vectors are also encoded into the bitstream via the arithmetic coder.

In the next pass the vectors which were previously found to be zero are scanned again. A new string of Z's, ZT's and C's is encoded into the bitstream. In order to reduce the number of symbols in this string, it is beneficial to obtain as many ZT's as possible. To achieve this, the vectors that have been found non-zero so far are assumed to be zero during the ZT generation, although they are not encoded as Z. As in the previous pass, the indices of the C vectors are encoded and the whole process is repeated until a certain bit rate is achieved.

The generated bitstream has a header, which informs the decoder about the number of stages of the decomposition, the image dimensions, the format of the image, the image means (luminance and both chrominances), the value of \(\alpha \) used and the initial value \(\ell \) of the reference magnitude. In our implementation 10 bytes are used for monochrome and 12 bytes for colour images.

It is important to point out that, using this type of coding, the decoder is able to decode the bitstream as long as it tracks the states of the encoder. In addition, the decoding of the bitstream can stop at any point, and an image with reduced quality can be obtained. This type of successive approximation process guarantees that, irrespective of the point in the bitstream where the decoding stops, the image quality will be the maximum possible for that bit rate [9].

This can be specially interesting when SHD image are to be used in an environment which demands images of different resolutions and levels of quality, because, in case a SHD image does not need to be in the highest possible quality, the bitstream can be only partially decoded, therefore saving resources.

SIMULATION RESULTS

In this section, the performance of Successive Approximation Wavelet Vector Quantisation (SA-W-VQ) for data compression of Super High Definition Images is evaluated and compared with simulation results reported in the literature. For our experiments we have used the very high quality image test set retrieved from the Center for Image Processing and Integrated Computing at the University of California at Davis, namely, PORTRAIT, X-WINDOWS, GIRL WITH COLOR CHECKER and GLASSES. These are RGB colour images at resolution 2048x2048x24, and they were produced by NTT, Japan. For coding purposes, the original RGB images are converted into YUV format and rate-distortion curves are generated only for the luminance signal (Y).

The coding performance of SA-W-VQ is compared with that of other algorithms for the compression of Super High Definition Images. For the purpose of this comparison, we have used the luminance signal (Y) of the test image PORTRAIT, since simulation results from various SHD image coders have been reported for this particular image. Figure 4 shows the performance of SA-W-VQ against those published in the literature for coding the PORTRAIT image, namely: Scene Adaptive DCT, Variable Block Size DCT, Sub-band Multistage VQ [1], Sub-band Entropy Scalar Quantiser and Sub-band Entropy Vector Quantiser [2].

It can be seen that SA-W-VQ achieves a remarkably good performance, outperforming the best of these coders by almost 7 dB for PORTRAIT, as can be seen from figure 4.a. Due to the use of lattice codebooks, this is accomplished maintaining a simple implementation which can be suitable for real time applications.

In figure 4.b the performance of SA-W-VQ for all four test images is shown. It can be seen that SA-W-VQ performs consistently for them.

CONCLUSIONS

A coding method based on vector quantisation of wavelet transform coefficients, referred to as Successive Approximation Wavelet Vector Quantisation (SA-W-VQ) was tested for Super High Definition (SHD) image coding. SHD image coding requires perceptually transparent picture quality with compression ratios of more than 10:1. Moreover, simplicity of the coding system is desirable, due to the huge amount of data to be processed.

Since SA-W-VQ provides an efficient image coder together with subjectively optimum bit allocation, full advantage of the HVS properties can be taken in order to obtain the high quality and compression ratio desired. In addition, due to the successive approximation process, the image quality can be made arbitrarily high, together with a completely
embedded bitstream. This provides the decoder with the possibility of selecting only part of the bitstream, obtaining a reduced quality picture which may be enough for a particular application. Yet, this is accomplished with minimum complexity due to the use of lattice vector quantisation.

Compression ratios of the order of 40:1 can be obtained without any noticeable distortion. For the test image PORTRAIT, SA-W-VQ outperforms all other coding systems reported so far by more than 7 dB. By considering the advantages of the proposed method and evaluating its coding performance, SA-W-VQ stands as an excellent data compression method for SHD still images.

REFERENCES

